Computational science and engineering plays an increasingly important role in economic competitiveness, national security, environmental stewardship, and public safety.

Indeed, computational science and engineering is central to all science and engineering endeavors — from the development of appropriate mathematical models to the prediction of mechanical, electrical, chemical, and biological phenomena to the design of complex natural and engineered systems. Computational engineering has now reached the stage in which further progress — to reach full potential as a pervasive enabling technology — requires the development of new interdisciplinary education and research models.

Our focus is on building computational tools for science and engineering problems: the development of new computational tools that are more efficient, more robust, or more capable; and the informed application of existing computational tools — in concert with modeling, experimental, and “analytical” approaches — to address particular problems and questions. Here computational tool is defined to connote both the underlying formulation of the numerical approach — described in mathematical terms — and a software embodiment of the numerical approach — code implemented in a specific programming language and perhaps for a particular architecture.

Our research projects are focused on several major methodology themes and several major applications themes.

Computational Modeling and Simulation Numerical Algorithms and Scientific Computing Uncertainty Quantification Data Analysis and Assimilation Design and Optimization